Efficacy of IncobotulinumtoxinA for the Treatment of Glabellar Frown Lines in Male Subjects: Post-Hoc Analyses from Randomized, Double-Blind Pivotal Studies

Derek H Jones, MD1; Martina Kerscher, MD2; Thorin Geister, PhD3; Michael A Hast, PhD4; Petra Weissenberger, MD3

1Skin and Laser Physicians of Beverly Hills; Beverly Hills, CA, USA; 2Division of Cosmetic Science, University of Hamburg; Hamburg, Germany; 3Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany; 4Merz North America, Inc., Raleigh, NC, USA

BACKGROUND

- Interest among men in minimally invasive cosmetic procedures continues to increase
- Moreover, high proportions of both male and female subjects receiving incobotulinumtoxinA
- Variations in treatment response are potentially associated with key male anatomical differences
- Difference in muscle mass is likely a key factor in determining males' threshold for response to botulinum toxin
- Compared with females, males demonstrate lower response rates on GFL
- Despite the increasing number of men seeking aesthetic procedures, they are underrepresented in the literature
- Pivotal Phase 3 EU Study on Upper Facial Lines: Post-Hoc Analysis
- Male facial anatomy also varies with respect to skull shape/bony prominences and vascularization
- Similar differences between male and female subjects were also observed in the pivotal phase 3 study for incobotulinumtoxinA for upper facial lines (UFLs), including the glabellar area
- The proportions of males who were considered responders (ie, score of 0 or 1 on respective wrinkle severity scales at maximum contraction at 30 days) in the pooled phase 3 studies were male-female responders (ie, score of 0 or 1 on respective wrinkle severity scales) were similar between incobotulinumtoxinA and onabotulinumtoxinA (Botulinum A, Allergan Inc. Irvine, CA) at 30 days at the same 20 U dose (Figure 4)
- Similar differences between male and female subjects were also observed in the pivotal phase 3 study for abobotulinumtoxinA (Disport, Galderma) in the treatment of GFLs
- However, variations in study design and the lack of a well-defined dose conversion between abobotulinumtoxinA and other botulinum toxin formulations preclude a direct comparison of results.

RESULTS

- The objective of this analysis was to assess the efficacy of incobotulinumtoxinA (Xeomin®/Bocouture®, Merz Pharmaceuticals GmbH) for the treatment of glabellar frown lines (GFLs) in men
- The final individualized treatment plan should be developed collaboratively with the patient and account for all variables that may affect aesthetic outcomes, including gender, age, ethnicity, skin quality, baseline wrinkle severity, muscle mass, and individual patient expectations
- Proper reconstitution technique is critical to avoid under-dosing the patient
- In the case of incobotulinumtoxinA, gentle inversion and swirling of the vial is required to ensure the full contents of the vial are properly suspended in the diluent

METHODS

Subjects and Treatment

- Previously described pooled, post-hoc analysis of incobotulinumtoxinA pivotal phase 3 GFL studies in the US1 was extended to include a male subgroup analysis
- N=65 males (incobotulinumtoxinA, n=34; placebo, n=31) with moderate to severe GFLs at baseline (Facial Wrinkle Scale (FWS))
- Supportive data are also provided from a post-hoc analysis of the European phase 3 study on incobotulinumtoxinA for upper facial lines (GFLs), including the glabellar area
- N=21 males (incobotulinumtoxinA, n=11; placebo, n=10) with moderate to severe GFLs at baseline (Merz Aesthetics Scales (MAS))
- 20 U of incobotulinumtoxinA (4 U in 0.1 cc in each of 5 injection sites in the GFL) were administered to each subject
- Subjects in the UFLs study also received treatment for horizontal forehead lines and crow's feet; post-hoc analyses were not conducted for these treatment areas
- Figures 2 and 3

DISCUSSION

Key Differences in Male Facial Anatomy

- Makes have a greater muscle mass in the glabellar area (procerus and corrugators supercilii) compared with females2
- Difference in muscle mass is likely a key factor in determining males’ threshold for response to botulinum toxin treatment
- Male facial anatomy also varies with respect to skin shape/bony prominences and vasculization
- Best Practices

Best Practices

- Gender-specific differences in treatment response provide an opportunity to revisit best practices for botulinum toxin administration and treatment plan development
- The most important factor in achieving the best possible outcomes is the development of a customized aesthetic treatment plan
- Careful evaluation of the patient’s aesthetic concerns both at rest and during animation is particularly important for achieving natural-looking results
- The final individualized treatment plan should be developed collaboratively with the patient and account for all variables that may affect aesthetic outcomes, including gender, age, ethnicity, skin quality, baseline wrinkle severity, muscle mass, and individual patient expectations
- Proper reconstitution technique is critical to avoid under-dosing the patient
- In the case of incobotulinumtoxinA, gentle inversion and swirling of the vial is required to ensure the full contents of the vial are properly suspended in the diluent

Study Limitations

- Overall, the number of male subjects available for post-hoc analyses was small
- Available active comparator studies for incobotulinumtoxinA and onabotulinumtoxinA for GFLs enrolled no male subjects, thus preventing their inclusion in these subgroup analyses
- However, the proportions of male responders to incobotulinumtoxinA on the FWS and MAS were consistent between studies, and similar trends have been observed individually for other botulinum toxins3,4

CONCLUSIONS

- Compared with females, males demonstrate lower response rates on GFL wrinklee severity scales in studies on all 3 available botulinum toxins
- Variations in treatment response are potentially associated with key male anatomical differences (eg, muscle mass)
- Overall, results emphasize the importance of customized treatment plans

References


Figure 1. Minimally Invasive Cosmetic Procedures in Men.

Figure 2. IncobotulinumtoxinA Pooling Analysis of Phase 3 GFL Studies: Responder Analysis at 30 Days

Figure 3. IncobotulinumtoxinA Phase 3 Upper Facial Lines Study*: GFL Responder Analysis at 30 Days

Figure 4. IncobotulinumtoxinA and OnabotulinumtoxinA Pivotal Phase 3 GFL Studies: GFL Responder Analysis at 30 Days