Recombinant Botulinum neurotoxin serotype A1 (SXN102342): protein engineering and process development

Andy Hooker, Shilpa Palan, Matthew Beard

Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK

Introduction

Botulinum neurotoxin (BoNT) is effective in the treatment of several movement disorders (Simpson, 2016). To date, over thirty naturally occurring BoNTs have been identified, including eight subtypes of BoNT/A; this natural diversity of BoNTs provides a rich selection of molecules for potential therapeutic exploitation.

Native BoNT/A comprises a family of highly related neurotoxins produced by *Clostridium botulinum* bacteria, all neutralised by the same antisera. BoNT/A1 (subtype A1) is notable, as the Hall-strain BoNT/A used to produce abobotulinumtoxinA (Dysport[®]), onabotulinumtoxinA (BoTox[®]) and incobotulinumtoxinA (Xeomin[®]). An increased understanding of the structure-function relationship of BoNT provides an opportunity to engineer recombinant (r) BoNTs with unique pharmacological properties and therapeutic applications.

rBoNT/A1 (SXN102342) is a multi-domain, multi-functional recombinant protein expressed within *Escherichia coli* (Figure 1). It is composed of a light chain (LC/A) endopeptidase domain, and a heavy chain composed of an N-terminal translocation domain (H_N/A) and a C-terminal neuronal targeting domain (H_c/A) .

 H_N/A - N-terminal functional domain of the Botulinum neurotoxin serotype A heavy chain H_c/A - C-terminal functional domain of the Botulinum neurotoxin serotype A heavy chain SV2 - Synaptic vesicle glycoprotein 2

Methods

BoNT/A sequence alignment Based on multiple analyses of BoNT/A strains, eight BoNT/A subtypes have been documented. Twenty eight non redundant sequences exist in public databases that can be clearly assigned to the BoNT/A subtype, the UNIPARC accession numbers for these are listed in Figure 2.

The rBoNT/A1 sequences are 1292 – 1297 amino acids in length and 84 – 99% identical to each other. UNIPROT identifier UPI000001386, Hall-strain BoNT/A used to produce multiple commercial products was identified as the preferred reference sequence. There are notable non-conservative amino acids differences with other sequences.

Results

Here, we describe the construction, expression, purification and characterisation of rBoNT serotype A1 (rBoNT/A1; SXN102342).

Construction of rBoNT/A1

DNA encoding rBoNT/A1 was fully synthesised, codon optimised for soluble expression in *Escherichia coli*, and transformed into a BLR (DE3) research cell bank.

Purification and activation of rBoNT/A1 Batches of cells were cultured in shake flasks at a 1-litre scale. Purification of rBoNT/A1 (SXN102342) was achieved by selective precipitation, followed by hydrophobic interaction and ion exchange column chromatography, coupled with an endoproteinase activation step (Figure 3). The activation stage cleaves the expressed single-chain precursor protein at a specific recognition site and produces the fully active di-chain rBoNT/A1 product, the light and heavy chains being joined by a disulphide bond. Hydrophobic interaction chromatography was then used to separate any residual endoproteinase from the target product.

Under non-reducing and denaturing conditions rBoNT/A1 SXN102342 (~150 kDa) maintains the interchain disulphide bond. Under reducing and denaturing conditions SXN102342 is converted into the free light chain (~50 kDa) and the heavy chain (~100 kDa). Each of these moieties has a specific electrophoretic migration pattern

Scan here to view a PDF of this poster

Copies of this poster obtained through Quick Response Code are for personal use only

QR code to be provided by Toxins

rBoNT/A1 testing and properties

Batches of rBoNT/A1 (SXN102342) drug substance were characterised against a panel of biochemical and functional assays (Figure 4). Batches of rBoNT/A1 (SXN102342) were more than 95% activated at the endoproteinase activation purification stage. The purification process resulted in final drug substance with greater than 95% purity and endotoxin levels below 2.5 EU/mg. The drug substance was formulated in either phosphate buffered saline (PBS) or PBS supplemented with human serum albumin and sucrose. Native BoNT/A1 from List Laboratories (Campbell, USA) was used as a reference in all assays.

Cellular and ex-vivo assays

Cellular potency was measured in rat primary embryonic spinal cord neurons (eSCN). SNAP-25 cleavage potency was assessed after treatment of cells with rBoNT/A1 for 24 hours by quantitation of full length and cleaved forms of SNAP-25 by Western blotting.

An *ex vivo* assay was used to measure the effects of BoNT at the neuromuscular junction. *Ex vivo* neuromuscular paralysis was measured by treating preparations of mouse phrenic hemidiaphragm at a final concentration of 10 pM and measuring time to 50% paralysis upon stimulation.

The resulting rBoNT/A1 product was functionally equivalent to nBoNT/A and offers a possible recombinant alternative to current commercial native BoNT/A1 products.

Conclusions

- Recombinant Botulinum neurotoxin sequences can be readily cloned into industry standard expression constructs for expression by microbial strain.
- Purification of soluble recombinant Botulinum neurotoxins be achieved using conventional protein can chromatography approaches, to a purity in excess of 95%.
- key aspect of purifying recombinant Botulinum neurotoxins is the requirement for proteolytic activation and conversion from the full-length single-chain precursor to the fully active di-chain product.
- The opportunity to successfully engineer and manufacture rBoNT/A1 acts as a rBoNT reference standard and baseline, for the development of other genetically modified rBoNTs with differentiated pharmacological properties, and new commercial BoNT product opportunities.

Keywords

Botulinum Neurotoxin (BoNT); Serotype A1; Manufacture; Protein engineering; Process development; Product characterisation.

References

Simpson DM, Hallett M, Ashman EJ, et al. Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity and headache. *Neurology*.2016;86:1818-1826.

